

Labstat

5000/1000 CBD/CBG N/A

Matrix: Concentration

Sample: KN30627001-001 Harvest/Lot ID: ENERGY FS 5000

Batch#: ENERGY FS 5000 Batch Date: 06/22/23

Sample Size Received: 30 ml Retail Product Size: 30 ml

> Ordered: 06/22/23 Sampled: 06/22/23 Completed: 07/03/23

Page 1 of 6

Certificate of Analysis

Jul 03, 2023 | Nunn Better Health &

180 East Interlake Blvd Lake Placid, FL, 33852, US

PASSED

PRODUCT IMAGE

SAFETY RESULTS

Pesticides PASSED

PASSED

Microbials PASSED

Residuals Solvents Mycotoxins PASSED

PASSED

Water Activity

Moisture

MISC.

TESTED

TESTED

Potency

Total THC

18.7825%

Total Cannabinoids

Analysis Method: SOP.T.30.031.TN & SOP.T.40.031.TN Expanded Measurement of Uncertainty: Flower Matrix d9-THC: ± 0.100, THCa: ± 0.124, TOTAL THC ± 0.112. These uncertainties represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor k=2 for a normal distribution.

Analytical Batch: KN003907POT

Reviewed On • 06/28/23 15:31:51

Instrument Used : E-SHI-008 Running on : N/A

Batch Date: 06/26/23 11:13:55

Reagent: 1/2922.10; 100422.02; 061623.R02; 062323.R04; 102722.16; 051123.08

Consumables: 302110210; 22/04/01; 220725; 230105059D; 239146; 947B9291.271; GD210005; 1350331; 6121219; 600054; IP250.100

Pipette: E-VWR-120

Full spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV/PDA detection (HPLC-UV/PDA). All cannabinoids have an LOQ of 0.01%

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Billion, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017

07/03/23

Labstat

5000/1000 CBD/CBG

Matrix : Concentration

Certificate of Analysis

TESTED

Nunn Better Health & Wellness

180 East Interlake Blvd Lake Placid, FL, 33852, US Telephone: (863) 633-0370 Email: nunnbetterhealth@gmail.com Sample: KN30627001-001 Harvest/Lot ID: ENERGY FS 5000

Batch# : ENERGY FS 5000 Sampled: 06/22/23 Ordered: 06/22/23

Sample Size Received: 30 ml

Completed: 07/03/23 Expires: 07/03/24

Page 2 of 6

Terpenes

TESTED

	LOD mg/ml % (%)	Result (%)	Terpenes LOD mg/ml % Result (%) (%)	
SABINENE HYDRATE	0.0003 ND ND		3-CARENE 0.0006 ND ND	
GERANIOL	0.0002 ND ND		FENCHYL ALCOHOL 0.0002 <0.192 <0.02	
GERANYL ACETATE	0.0006 ND ND		HEXAHYDROTHYMOL 0.0006 ND ND	
GUAIOL	0.0002 <0.192 <0.02		EUCALYPTOL 0.0006 ND ND	
LIMONENE	0.0003 <0.192 <0.02		ISOBORNEOL 0.0006 ND ND	
LINALOOL	0.0005 ND ND		FARNESENE 0.0006 ND ND	
NEROL	0.0007 ND ND		FENCHONE 0.0005 ND ND	
DCIMENE	0.0004 ND ND		Analyzed by: Weight: Extraction date: Ext	tracted I
ALPHA-PHELLANDRENE	0.0006 ND ND		138, 3050 1.0197g 06/27/23 13:16:27 13:	8
PULEGONE	0.0002 ND ND		Analysis Method : SOP.T.40.061.TN	
ABINENE	0.0004 ND ND		Analytical Batch : KN003910TER Reviewed On : 06/29/23 17:32:46 Instrument Used : E-SHI-109 Batch Date : 06/27/23 09:44:35	
AMMA-TERPINENE	0.0003 ND ND		Running on: N/A	
ERPINEOL	0.0003 < 0.2 < 0.02		Dilution: 10	
ERPINOLENE	0.0002 <0.192 <0.02		Reagent: 092221.04	
RANS-CARYOPHYLLENE	0.0006 <0.192 <0.02		Consumables: 302110210; 220725; 211214634-D; 947B9291.271 Pipette: E-GIL-011; E-GIL-013	
RANS-NEROLIDOL	0.0002 <0.192 <0.02			
ALENCENE	0.0007 <0.192 <0.02		Terpenoid profile screening is performed using GC-MS with Liquid Injection (Gas Chromatography – Mass Spectro 38 terpenes.	ometer) v
	0.0007 <0.192 <0.02 0.0008 0.6902 0.0719		Terpenoio pronie screening is performed using GL-MS with Liquid Injection (Gas Chromatography – Mass Spectro 38 terpenes.	ometer) v
LPHA-BISABOLOL				ometer) v
PHA-BISABOLOL PHA-HUMULENE	0.0008 0.6902 0.0719			ometer) v
LPHA-BISABOLOL LPHA-HUMULENE LPHA-PINENE	0.0008			ometer) w
LPHA-BISABOLOL LPHA-HUMULENE LPHA-PINENE LPHA-TERPINENE	0.0008 0.6902 0.0719 0.0003 <0.192 <0.02 0.0004 <0.192 <0.02			ometer) v
LPHA-BISABOLOL LPHA-HUMULENE LPHA-PINENE LPHA-TERPINENE ETA-MYRCENE	0.0008 0.6902 0.0719 0.0003 <0.192 <0.02 0.0004 <0.192 <0.02 0.0003 ND ND			ometer) w
LPHA-BISABOLOL LPHA-HUMULENE LPHA-PINENE LPHA-TERPINENE ETA-MYRCENE ETA-PINENE	0.0008 0.6902 0.0719 0.0003 <0.192 <0.02 0.0004 <0.192 <0.02 0.0003 ND ND 0.0006 ND ND			ometer) w
LPHA-BISABOLOL LPHA-HUMULENE LPHA-PINENE LPHA-TERPINENE ETA-MYRCENE ETA-PINENE ORNEOL	0.0008 0.6902 0.0719 0.0003 <0.192 <0.02 0.0004 <0.192 <0.02 0.0003 ND ND 0.0006 ND ND 0.0004 <0.192 <0.02			ometer) w
LLPHA-BISABOLOL LPHA-HUMULENE LPHA-PINENE LLPHA-TERPINENE ETA-MYRCENE IETA-PINENE IORNEOL LAMPHENE	0.0008 0.6902 0.0719 0.0003 <0.192 <0.02 0.0004 <0.192 <0.02 0.0003 ND ND 0.0006 ND ND 0.0004 <0.192 <0.02 0.0006 <0.384 <0.04			ometer) v
LPHA-BISABOLOL LPHA-HUMULENE LPHA-PINENE LPHA-TERPINENE ETA-MYRCENE ETA-PINENE ORNEOL AMPHENE AMPHOR	0.0008 0.6902 0.0719 0.0003 <0.192 <0.02 0.0004 <0.192 <0.02 0.0003 ND ND 0.0006 ND ND 0.0004 <0.192 <0.02 0.0006 <0.384 <0.04 0.0007 ND ND			ometer) v
LPHA-BISABOLOL LPHA-HUMULENE LPHA-PINENE LPHA-TERPINENE ETA-MYRCENE ETA-PINENE ORNEOL AMPHENE AMPHENE AMPHOR ARYOPHYLLENE OXIDE	0.0008 0.6902 0.0719 0.0003 <0.192 <0.02 0.0004 <0.192 <0.02 0.0003 ND ND 0.0006 ND ND 0.0004 <0.192 <0.02 0.0006 <0.384 <0.04 0.0007 ND ND 0.0005 ND ND			ometer) w
LPHA-BISABOLOL LPHA-HUMULENE LPHA-PINENE LPHA-TERPINENE ETA-MYRCENE ETA-PINENE ORNEOL AMPHOR AMPHOR ARYOPHYLLENE OXIDE EDROL	0.0008 0.6902 0.0719 0.0003 <0.192 <0.02 0.0004 <0.192 <0.02 0.0003 ND ND 0.0006 ND ND 0.0004 <0.192 <0.02 0.0006 ND ND 0.0004 <0.0192 <0.02 0.0006 ND ND 0.0006 ND ND 0.0005 ND ND 0.0005 ND ND 0.0005 0.3273 0.0341			ometer) w
VALENCENE ALPHA-BISABOLOL ALPHA-HUMULENE ALPHA-PINENE ALPHA-TERPINENE BETA-MYRCENE BETA-PINENE BORNEOL CAMPHENE CAMPHOR CARYOPHYLLENE OXIDE CEEROL ALPHA-CEDRENE	0.0008 0.6902 0.0719 0.0003 <0.192 <0.02 0.0004 <0.192 <0.02 0.0008 ND ND 0.0006 ND ND 0.0006 <0.384 <0.04 0.0007 ND ND 0.0005 ND ND 0.0007 ND ND			ometer) w

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Billion, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017

07/03/23

Nunn Better Health & Wellness

Email: nunnbetterhealth@gmail.com

180 East Interlake Blvd

Lake Placid, FL, 33852, US

Telephone: (863) 633-0370

Labstat

5000/1000 CBD/CBG

Matrix : Concentration

Certificate of Analysis

Sample: KN30627001-001

Harvest/Lot ID: ENERGY FS 5000 Batch# : ENERGY FS 5000 Sampled: 06/22/23

Ordered: 06/22/23

Sample Size Received: 30 ml Completed: 07/03/23 Expires: 07/03/24 **TESTED**

Page 3 of 6

Pesticides

P	A	S	S	Ε	D

LOD	Units	Action Level	Pass/Fail	Result
0.012	ppm	0.3	PASS	ND
0.008	ppm	3	PASS	ND
0.038	ppm	2	PASS	ND
0.009	ppm	3	PASS	ND
0.009	ppm	0.1	PASS	ND
0.013	ppm	3	PASS	ND
0.028	ppm	3	PASS	ND
0.047	ppm	0.5	PASS	ND
0.007	ppm	3	PASS	ND
0.015	ppm	0.5	PASS	ND
0.008	ppm	0.1	PASS	ND
		1	PASS	ND
		3	PASS	ND
		0.1	PASS	ND
		0.5	PASS	ND
		0.1	PASS	ND
		0.1	PASS	ND
			PASS	ND
			PASS	ND
			PASS	ND
	111			ND
		-		ND
		0.1		ND
	P.F			ND
				ND
		0.1		ND
			/	ND
		/ - /		ND
				ND
		-		ND
		-		ND
		_		ND
				ND
	11.0	-		ND
	11.0			ND
	11.0	_		ND
	11.11	-		ND
				ND
				ND
				ND
		-		ND
				ND
				ND ND
	1.1.			ND ND
		_		ND ND
0.006	ppm	3	PASS	ND
	0.012 0.008 0.038 0.009 0.009 0.013 0.028 0.047 0.007 0.015 0.008 0.012 0.008 0.014 0.006 0.009 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.008 0.014 0.011 0.009 0.01 0.008 0.008 0.008 0.008 0.008 0.009 0.007 0.009 0.007 0.005 0.01	0.012 ppm 0.008 ppm 0.008 ppm 0.009 ppm 0.009 ppm 0.013 ppm 0.028 ppm 0.047 ppm 0.015 ppm 0.015 ppm 0.012 ppm 0.014 ppm 0.014 ppm 0.006 ppm 0.006 ppm 0.006 ppm 0.009 ppm	0.012 ppm 0.3 0.008 ppm 3 0.008 ppm 3 0.038 ppm 2 0.009 ppm 3 0.009 ppm 0.1 0.013 ppm 0.1 0.013 ppm 3 0.028 ppm 3 0.047 ppm 0.5 0.007 ppm 0.5 0.008 ppm 0.1 0.012 ppm 1 0.008 ppm 0.1 0.006 ppm 0.1 0.006 ppm 0.1 0.006 ppm 0.1 0.006 ppm 0.1 0.009 ppm 0.1 0.007 ppm 0.1 0.007 ppm 0.1 0.009 ppm 0.1	Level 0.012 ppm 0.3

Pesticide		LOD	Units	Action Level	Pass/Fail	Result
PRALLETHRIN		0.008	ppm	0.4	PASS	ND
PROPICONAZOLE		0.007	ppm	1	PASS	ND
PROPOXUR		0.008	ppm	0.1	PASS	ND
PYRETHRINS		0.002	ppm	1	PASS	ND
PYRIDABEN		0.007	ppm	3	PASS	ND
SPINETORAM		0.004	ppm	3	PASS	ND
SPIROMESIFEN		0.009	ppm	3	PASS	ND
SPIROTETRAMAT		0.009	ppm	3	PASS	ND
SPIROXAMINE		0.006	ppm	0.1	PASS	ND
TEBUCONAZOLE		0.009	ppm	1	PASS	ND
THIACLOPRID		0.008	ppm	0.1	PASS	ND
THIAMETHOXAM		0.009	ppm	1	PASS	ND
TOTAL SPINOSAD		0.009	ppm	3	PASS	ND
TRIFLOXYSTROBIN		0.009	ppm	3	PASS	ND
Analyzed by: 2803	Weight: 1.0010g	Extraction d 06/28/23 13:			Extracted 2803	by:

2803 1.0010g 06/28/23 13:05:39 2803

Analysis Method : SOP.T.30.101.TN, SOP.T.40.101.TN
Analytical Batch : KN003914PE5 Running on : N/A

Blution : 0.01

Reagent : 010523.R11; 030723.R19; 052623.R03; 062023.R01; 122322,R26; 101722.04; 011723.04; 032221.01

Consumables : 302110210; K130252j; 22/04/01; 220725; 21267B0; 251760; 201123-058; 211214634-0; 239146; 60210005: 1350331: 1300.062

GD210005; 1350331; 1300.062 **Pipette**: E-VWR-116; E-VWR-117; E-VWR-118; E-VWR-119

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Billion, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017

07/03/23

Labstat

5000/1000 CBD/CBG

Extracted by:

Matrix: Concentration

Certificate of Analysis

Sample: KN30627001-001 Nunn Better Health & Wellness

Harvest/Lot ID: ENERGY FS 5000 Batch# : ENERGY FS 5000 Sampled: 06/22/23

Ordered: 06/22/23

Sample Size Received: 30 ml

Completed: 07/03/23 Expires: 07/03/24

TESTED

Page 4 of 6

180 East Interlake Blvd

Lake Placid, FL, 33852, US

Telephone: (863) 633-0370

Email: nunnbetterhealth@gmail.com

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result
PROPANE	100	ppm	5000	PASS	ND
BUTANES (N-BUTANE)	100	ppm	5000	PASS	ND
METHANOL	20	ppm	250	PASS	ND
ETHYLENE OXIDE	0.2	ppm	5	PASS	ND
PENTANES (N-PENTANE)	32	ppm	750	PASS	ND
ETHANOL	100	ppm	5000	PASS	ND
ETHYL ETHER	10	ppm	500	PASS	ND
1.1-DICHLOROETHENE	0.6	ppm	8	PASS	ND
ACETONE	40	ppm	750	PASS	ND
2-PROPANOL	25	ppm	500	PASS	ND
ACETONITRILE	20	ppm	60	PASS	ND
DICHLOROMETHANE	2	ppm	125	PASS	ND
N-HEXANE	10	ppm	250	PASS	ND
ETHYL ACETATE	8.3	ppm	400	PASS	ND
CHLOROFORM	0.04	ppm	2	PASS	ND
BENZENE	0.03	ppm	1	PASS	ND
1,2-DICHLOROETHANE	0.05	ppm	2	PASS	ND
HEPTANE	53	ppm	5000	PASS	ND
TRICHLOROETHYLENE	0.5	ppm	25	PASS	ND
TOLUENE	5	ppm	150	PASS	ND
TOTAL XYLENES - M, P & O - DIMETHYLBENZENE	15	ppm	150	PASS	ND

07/03/23 10:09:43

Reviewed On: 07/03/23 12:38:13 **Batch Date:** 06/30/23 09:11:29

Analysis Method: SOP.T.40.041.TN Analytical Batch : KN003919SOL

Instrument Used: E-SHI-106 Running on : N/A

Dilution: N/A Reagent: N/A

Consumables: R2017.167; G201-167; G201.167

Pipette: N/A

Analyzed by: 138, 3050

 $Residual\ solvents\ analysis\ is\ performed\ using\ Gas\ Chromatography\ /\ Mass\ Spectrometry.\ *Based\ on\ FL\ action\ limits.$

Weight: 0.02404g

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017

07/03/23

Labstat

5000/1000 CBD/CBG

Matrix : Concentration

Certificate of Analysis

ESTED

Nunn Better Health & Wellness

180 East Interlake Blvd Lake Placid, FL, 33852, US Telephone: (863) 633-0370 Email: nunnbetterhealth@gmail.com

Sample: KN30627001-001 Harvest/Lot ID: ENERGY FS 5000

Batch# : ENERGY FS 5000 Sampled: 06/22/23 Ordered: 06/22/23

Sample Size Received: 30 ml Completed: 07/03/23 Expires: 07/03/24 Page 5 of 6

Microbial

Mycotoxins

PASSED

Analyte		LOD Units	Result	Pass / Fail	Action Level
ESCHERICHIA COLI SHIGELLA SPP SALMONELLA SPECIFIC GENE ASPERGILLUS FLAVUS ASPERGILLUS FUMIGATUS			Not Present	PASS	
			Not Present	PASS	
			Not Present		
			Not Present		
ASPERGILLUS N	IIGER		Not Present	PASS	
ASPERGILLUS T	ERREUS		Not Present	PASS	
Analyzed by: 2805	Weight: 1.0073g	Extraction date: 06/27/23 09:48:19		Extracted by 2805	/: /

Analysis Method: SOP.T.40.056C, SOP.T.40.041 LOD is 1 CFU

Analytical Batch : KN003905MIC Instrument Used: E-HEW-069

Reviewed On: 06/28/23 14:33:57 Batch Date: 06/26/23 09:42:43

Running on : N/A

Reagent: 1.01822.09; 061623.01; 010923.06; 072722.06 Consumables: 22/04/01; 251773; 242429; 2DAX30621; P7528255; 41218-146C4-146C;

263989; 93825; 007109; n/a; 247040; 0150210 **Pipette**: E-THE-045; E-THE-046; E-THE-047; E-THE-048; E-THE-049; E-THE-050; E-THE-051; E-

THE-052; E-THE-053; E-THE-054; E-BIO-188

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. With an LOD of 1cfu, if a pathogenic E Coli, Salmonella, A fumigatus, A flavus, A niger, or A terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing.

Analyte	LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN G2	0.0016	ppm	ND	PASS	0.02
AFLATOXIN G1	0.0012	ppm	ND	PASS	0.02
AFLATOXIN B2	0.0012	ppm	ND	PASS	0.02
AFLATOXIN B1	0.0012	ppm	ND	PASS	0.02
OCHRATOXIN A+	0.002	ppm	ND	PASS	0.02
TOTAL MYCOTOXINS	0.002	maa	ND	PASS	0.02

Analyzed by: Weight: Extraction date: Extracted by: 1.0010g 06/28/23 13:05:39

Analysis Method: SOP.T.30.101.TN, SOP.T.40.101.TN
Analytical Batch: KN003915MYC Review

Reviewed On: 06/28/23 13:34:42 Instrument Used : E-SHI-125 Batch Date: 06/28/23 13:09:35 Running on: N/A

Dilution: 0.01

Reagent: 010523.R11; 030723.R19; 052623.R03; 062023.R01; 122322.R26; 101722.04;

 $\begin{array}{l} 011\overline{7}23.04;\ 032221.01 \\ \textbf{Consumables}:\ 302110210;\ K130252J;\ 22/04/01;\ 220725;\ 21267B0;\ 251760;\ 201123-058; \end{array}$

211214634-D; 239146; GD210005; 1350331; 1300.062 **Pipette**: E-VWR-116; E-VWR-117; E-VWR-118; E-VWR-119

Aflatoxins B1, B2, G1, G2, and Ochratoxins Mycrotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry. *Based on FL action limits.

Heavy Metals

PASSED

	LOD	Units	Result	Pass / Fail	Action Level
	0.02	ppm	ND	PASS	1.5
	0.02	ppm	ND	PASS	0.5
	0.02	ppm	ND	PASS	3
	0.02	ppm	ND	PASS	0.5
Weight: 0.2539g					by:
		0.02 0.02 0.02 0.02 0.02 Weight: Extraction date	0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm	0.02 ppm ND Weight: Extraction date: E	0.02 ppm ND PASS

Analysis Method: SOP.T.30.082, SOP.T.40.082.TN

Analytical Batch: KN003911HEA

Reviewed On: 06/28/23 10:57:39 Instrument Used : E-AGI-084 Batch Date: 06/27/23 10:40:38 Running on : N/A

Reagent: 051123.02; 100422.02; 061323.R04; 050323.R02; 101722.05; 022023.01; $061523.R03;\ 051523.R39;\ 031423.R01;\ 051523.R12;\ 051723.R03;\ 051723.R04;\ 051723.R05;$ 031623.R02; 041923.R03

Consumables: 257747; 829C6-829B; 221200; A260422A Pipette: E-EPP-081; E-EPP-082

Heavy Metals analysis is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screen down to single digit ppb concentrations. LOQ is 0.04 ppm for all metals. *Based on FL action

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Billion, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017

07/03/23

Labstat

5000/1000 CBD/CBG

N/A

Matrix : Concentration

Certificate of Analysis

Reviewed On: 06/27/23 09:59:39

Batch Date: 06/20/23 09:38:43

Nunn Better Health & Wellness

180 East Interlake Blvd Lake Placid, FL, 33852, US **Telephone:** (863) 633-0370 **Email:** nunnbetterhealth@gmail.com Sample : KN30627001-001 Harvest/Lot ID: ENERGY FS 5000

Batch#: ENERGY FS 5000 Sampled: 06/22/23 Ordered: 06/22/23 Sample Size Received: 30 ml Completed: 07/03/23 Expires: 07/03/24 **TESTED**

Page 6 of 6

Filth/Foreign Material

PASSED

Analyte		LOD	Units	Result	P/F	Action Level
Filth and Foreign Material		1	detect/g	ND	PASS	3
Analyzed by: 2805	Weight: 0.5474q	Extraction date: 06/27/23 09:49:05		Extr 280	racted by:	

Analysis Method: SOP.T.40.090 Analytical Batch: KN003889FIL Instrument Used: E-AMS-138 Running on: N/A

Dilution: N/A
Reagent: N/A
Consumables: N/A
Pipette: N/A

This includes but is not limited to hair, insects, feces, packaging contaminants, and manufacturing waste and by-products. A SW-2T13 Stereo Microscope is use for inspection.

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproductibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson
Lab Director

State License # n/a ISO Accreditation # 17025:2017

07/03/23